投注威廉希尔彩票吗?
电子产品世界 » 论坛首页 » DIY与开源设计 » 电子DIY » MPU6050数据滤波方式

共19条 1/2 1 2 跳转至

MPU6050数据滤波方式

助工
2014-06-21 20:08:30     打赏
在做数据融合的时候,看到crazyflie使用的是IIR滤波,我以前玩arduino的时候用过Kalman滤波,对于外行来说不知道两种方式有什么不一样,哪种更适用于我们的飞控。希望专业人士来解答一下,给个网页参考亦可。



关键词: MPU6050     滤波     数据    

助工
2014-06-21 20:21:10     打赏
2楼
/**
 * IIR filter the samples.
 */
int16_t iirLPFilterSingle(int32_t in, int32_t attenuation,  int32_t* filt)
{
  int32_t inScaled;
  int32_t filttmp = *filt;
  int16_t out;

  if (attenuation > (1<<IIR_SHIFT))
  {
    attenuation = (1<<IIR_SHIFT);
  }
  else if (attenuation < 1)
  {
    attenuation = 1;
  }

  // Shift to keep accuracy
  inScaled = in << IIR_SHIFT;
  // Calculate IIR filter
  filttmp = filttmp + (((inScaled-filttmp) >> IIR_SHIFT) * attenuation);
  // Scale and round
  out = (filttmp >> 8) + ((filttmp & (1 << (IIR_SHIFT - 1))) >> (IIR_SHIFT - 1));
  *filt = filttmp;

  return out;
}

 


院士
2014-06-21 22:14:30     打赏
3楼
这个话题不错,可以深入研究一下

助工
2014-06-22 02:38:36     打赏
4楼

贴一下以前做的卡尔曼滤波的程序,比较简单的arduino程序:

void loop() {
  /* Update all the values */  
  while(i2cRead(0x3B,i2cData,14));
  accX = ((i2cData[0] << 8) | i2cData[1]);
  accY = ((i2cData[2] << 8) | i2cData[3]);
  accZ = ((i2cData[4] << 8) | i2cData[5]);
  tempRaw = ((i2cData[6] << 8) | i2cData[7]);  
  gyroX = ((i2cData[8] << 8) | i2cData[9])+112;
  gyroY = ((i2cData[10] << 8) | i2cData[11])+69;
  gyroZ = ((i2cData[12] << 8) | i2cData[13])+112;
  
  // atan2 outputs the value of -π to π (radians) - see http://en.wikipedia.org/wiki/Atan2
  // We then convert it to 0 to 2π and then from radians to degrees
  accXangle = (atan2(accY,accZ)+PI)*RAD_TO_DEG;
  accYangle = (atan2(accX,accZ)+PI)*RAD_TO_DEG;
  
  double gyroXrate = (double)gyroX/131.0;
  double gyroYrate = -((double)gyroY/131.0);
  gyroXangle += gyroXrate*((double)(micros()-timer)/1000000); // Calculate gyro angle without any filter  
  gyroYangle += gyroYrate*((double)(micros()-timer)/1000000);
  //gyroXangle += kalmanX.getRate()*((double)(micros()-timer)/1000000); // Calculate gyro angle using the unbiased rate
  //gyroYangle += kalmanY.getRate()*((double)(micros()-timer)/1000000);
  
  compAngleX = (0.93*(compAngleX+(gyroXrate*(double)(micros()-timer)/1000000)))+(0.07*accXangle); // Calculate the angle using a Complimentary filter
  compAngleY = (0.93*(compAngleY+(gyroYrate*(double)(micros()-timer)/1000000)))+(0.07*accYangle);
  
  kalAngleX = kalmanX.getAngle(accXangle, gyroXrate, (double)(micros()-timer)/1000000); // Calculate the angle using a Kalman filter
  kalAngleY = kalmanY.getAngle(accYangle, gyroYrate, (double)(micros()-timer)/1000000);
  timer = micros();
  
  temp = ((double)tempRaw + 12412.0) / 340.0;
  
  /* Print Data */
  
/*  Serial.print(accX);Serial.print(",");
/*  Serial.print(accY);Serial.print(",");
  Serial.print(accZ);Serial.print(",");
  
  Serial.print(gyroX);Serial.print(",");
  Serial.print(gyroY); Serial.print(",");
  Serial.print(gyroZ);Serial.print(",");
  */
  Serial.print(accXangle);Serial.print(",");
  Serial.print(gyroXangle);Serial.print(",");
  Serial.print(compAngleX);Serial.print(",");
  Serial.print(kalAngleX);Serial.print(",    ");
  
  Serial.print("");
  
  Serial.print(accYangle);Serial.print(",");
  Serial.print(gyroYangle);Serial.print(",");
  Serial.print(compAngleY); Serial.print(",");
  Serial.print(kalAngleY);Serial.print(",");
  
  //Serial.print(temp);Serial.print(",");
  
  Serial.println("");
  delay(10);
}

 



助工
2014-06-22 02:41:54     打赏
5楼

上面的程序中的卡尔曼滤波函数也贴上来,需要的拿去:

/* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics. All rights reserved.
 
 This software may be distributed and modified under the terms of the GNU
 General Public License version 2 (GPL2) as published by the Free Software
 Foundation and appearing in the file GPL2.TXT included in the packaging of
 this file. Please note that GPL2 Section 2[b] requires that all works based
 on this software must also be made publicly available under the terms of
 the GPL2 ("Copyleft").
 
 Contact information
 -------------------
 
 Kristian Lauszus, TKJ Electronics
 Web      :  http://www.tkjelectronics.com
 e-mail   :  kristianl@tkjelectronics.com
 */

#ifndef _Kalman_h
#define _Kalman_h

class Kalman {
public:
    Kalman() {
        /* We will set the varibles like so, these can also be tuned by the user */
        Q_angle = 0.001;
        Q_bias = 0.003;
        R_measure = 0.03;
        
        bias = 0; // Reset bias
        P[0][0] = 0; // Since we assume tha the bias is 0 and we know the starting angle (use setAngle), the error covariance matrix is set like so - see: http://en.wikipedia.org/wiki/Kalman_filter#Example_application.2C_technical
        P[0][1] = 0;
        P[1][0] = 0;
        P[1][1] = 0;
    };
    // The angle should be in degrees and the rate should be in degrees per second and the delta time in seconds
    double getAngle(double newAngle, double newRate, double dt) {
        // KasBot V2  -  Kalman filter module - http://www.x-firm.com/?page_id=145
        // Modified by Kristian Lauszus
        // See my blog post for more information: http://blog.tkjelectronics.dk/2012/09/a-practical-approach-to-kalman-filter-and-how-to-implement-it
                        
        // Discrete Kalman filter time update equations - Time Update ("Predict")
        // Update xhat - Project the state ahead
        /* Step 1 */
        rate = newRate - bias;
        angle += dt * rate;
        
        // Update estimation error covariance - Project the error covariance ahead
        /* Step 2 */
        P[0][0] += dt * (dt*P[1][1] - P[0][1] - P[1][0] + Q_angle);
        P[0][1] -= dt * P[1][1];
        P[1][0] -= dt * P[1][1];
        P[1][1] += Q_bias * dt;
        
        // Discrete Kalman filter measurement update equations - Measurement Update ("Correct")
        // Calculate Kalman gain - Compute the Kalman gain
        /* Step 4 */
        S = P[0][0] + R_measure;
        /* Step 5 */
        K[0] = P[0][0] / S;
        K[1] = P[1][0] / S;
        
        // Calculate angle and bias - Update estimate with measurement zk (newAngle)
        /* Step 3 */
        y = newAngle - angle;
        /* Step 6 */
        angle += K[0] * y;
        bias += K[1] * y;
        
        // Calculate estimation error covariance - Update the error covariance
        /* Step 7 */
        P[0][0] -= K[0] * P[0][0];
        P[0][1] -= K[0] * P[0][1];
        P[1][0] -= K[1] * P[0][0];
        P[1][1] -= K[1] * P[0][1];
        
        return angle;
    };
    void setAngle(double newAngle) { angle = newAngle; }; // Used to set angle, this should be set as the starting angle
    double getRate() { return rate; }; // Return the unbiased rate
    
    /* These are used to tune the Kalman filter */
    void setQangle(double newQ_angle) { Q_angle = newQ_angle; };
    void setQbias(double newQ_bias) { Q_bias = newQ_bias; };
    void setRmeasure(double newR_measure) { R_measure = newR_measure; };
    
private:
    /* Kalman filter variables */
    double Q_angle; // Process noise variance for the accelerometer
    double Q_bias; // Process noise variance for the gyro bias
    double R_measure; // Measurement noise variance - this is actually the variance of the measurement noise
    
    double angle; // The angle calculated by the Kalman filter - part of the 2x1 state matrix
    double bias; // The gyro bias calculated by the Kalman filter - part of the 2x1 state matrix
    double rate; // Unbiased rate calculated from the rate and the calculated bias - you have to call getAngle to update the rate
    
    double P[2][2]; // Error covariance matrix - This is a 2x2 matrix
    double K[2]; // Kalman gain - This is a 2x1 matrix
    double y; // Angle difference - 1x1 matrix
    double S; // Estimate error - 1x1 matrix
};

#endif

 



助工
2014-06-23 11:50:30     打赏
6楼
卡尔曼的参数你是怎么整定的,我就觉得那个才是最难的

菜鸟
2014-06-23 20:02:19     打赏
7楼
我觉得iir和kalman两种滤波器没有可比性,iir是传统滤波器,也就是选频滤波器,目标是得到希望频带的信号分量,kalman是现代滤波器,是基于时域,先验知识和统计量的,它的目的是希望得到各种数据的置信度,相当于信息融合,完全不能在一起比较啊,当然现代滤波器中比如互补滤波,它的核心就是一个低通选频加速度滤波加上高通选频角速度滤波,但是滤波器设计思想和目的是不一样的,没法比较

菜鸟
2014-06-23 22:57:53     打赏
8楼

[無責任發言]

基本上, IIR 濾波是(頻域)濾波器, Kalman則是(時域)濾波器. 沒有誰好誰壞之分, 端看應用面.


IIR 較相近是對某固定主頻率的(低通)濾波器. 這個適合在SENSOR上有雜訊時, 把NOISE濾掉. 在MUP6050上而言, 雜訊就是當你讓SENSOR 本身靜止不動時, 但若它卻送出抖動的訊息時, 那就是雜訊. 


Kalman則是非固定的, 它可以隨時間收集到的DATA, 做出預測及動態調整要做濾波的主頻率, 所以特別適合用在追蹤某目標的位置/速度/加速度時, 對目標的位置估計(去掉NOISE)


助工
2014-06-24 00:35:01     打赏
9楼
看过几个视频,关于卡尔曼滤波,互补滤波的对比视频,发现卡尔曼滤波速度还是快一点?或者是互补滤波过滤的有点过了? 视频地址http://v.youku.com/v_show/id_XNTQyODUxNzU2.html

助工
2014-06-24 00:42:32     打赏
10楼
嗯,学习了,非专业菜鸟,看到两个滤波以为是一种东西,贻笑大方了。在上面的卡尔曼滤波中,并没有对传感数据进行滤波,而是直接求角度后卡尔曼滤波,结果也是很准确,比较好的反映了角度。在我们的四轴上是不是也可以这样处理呢?不用对采集的acc和角速度处理,而是求角度后再卡尔曼滤波?

共19条 1/2 1 2 跳转至

回复

匿名不能发帖!请先 [ 登陆 注册 ]