MPU6050数据滤波方式
/** * IIR filter the samples. */ int16_t iirLPFilterSingle(int32_t in, int32_t attenuation, int32_t* filt) { int32_t inScaled; int32_t filttmp = *filt; int16_t out; if (attenuation > (1<<IIR_SHIFT)) { attenuation = (1<<IIR_SHIFT); } else if (attenuation < 1) { attenuation = 1; } // Shift to keep accuracy inScaled = in << IIR_SHIFT; // Calculate IIR filter filttmp = filttmp + (((inScaled-filttmp) >> IIR_SHIFT) * attenuation); // Scale and round out = (filttmp >> 8) + ((filttmp & (1 << (IIR_SHIFT - 1))) >> (IIR_SHIFT - 1)); *filt = filttmp; return out; }
贴一下以前做的卡尔曼滤波的程序,比较简单的arduino程序:
void loop() {
/* Update all the values */
while(i2cRead(0x3B,i2cData,14));
accX = ((i2cData[0] << 8) | i2cData[1]);
accY = ((i2cData[2] << 8) | i2cData[3]);
accZ = ((i2cData[4] << 8) | i2cData[5]);
tempRaw = ((i2cData[6] << 8) | i2cData[7]);
gyroX = ((i2cData[8] << 8) | i2cData[9])+112;
gyroY = ((i2cData[10] << 8) | i2cData[11])+69;
gyroZ = ((i2cData[12] << 8) | i2cData[13])+112;
// atan2 outputs the value of -π to π (radians) - see http://en.wikipedia.org/wiki/Atan2
// We then convert it to 0 to 2π and then from radians to degrees
accXangle = (atan2(accY,accZ)+PI)*RAD_TO_DEG;
accYangle = (atan2(accX,accZ)+PI)*RAD_TO_DEG;
double gyroXrate = (double)gyroX/131.0;
double gyroYrate = -((double)gyroY/131.0);
gyroXangle += gyroXrate*((double)(micros()-timer)/1000000); // Calculate gyro angle without any filter
gyroYangle += gyroYrate*((double)(micros()-timer)/1000000);
//gyroXangle += kalmanX.getRate()*((double)(micros()-timer)/1000000); // Calculate gyro angle using the unbiased rate
//gyroYangle += kalmanY.getRate()*((double)(micros()-timer)/1000000);
compAngleX = (0.93*(compAngleX+(gyroXrate*(double)(micros()-timer)/1000000)))+(0.07*accXangle); // Calculate the angle using a Complimentary filter
compAngleY = (0.93*(compAngleY+(gyroYrate*(double)(micros()-timer)/1000000)))+(0.07*accYangle);
kalAngleX = kalmanX.getAngle(accXangle, gyroXrate, (double)(micros()-timer)/1000000); // Calculate the angle using a Kalman filter
kalAngleY = kalmanY.getAngle(accYangle, gyroYrate, (double)(micros()-timer)/1000000);
timer = micros();
temp = ((double)tempRaw + 12412.0) / 340.0;
/* Print Data */
/* Serial.print(accX);Serial.print(",");
/* Serial.print(accY);Serial.print(",");
Serial.print(accZ);Serial.print(",");
Serial.print(gyroX);Serial.print(",");
Serial.print(gyroY); Serial.print(",");
Serial.print(gyroZ);Serial.print(",");
*/
Serial.print(accXangle);Serial.print(",");
Serial.print(gyroXangle);Serial.print(",");
Serial.print(compAngleX);Serial.print(",");
Serial.print(kalAngleX);Serial.print(", ");
Serial.print("");
Serial.print(accYangle);Serial.print(",");
Serial.print(gyroYangle);Serial.print(",");
Serial.print(compAngleY); Serial.print(",");
Serial.print(kalAngleY);Serial.print(",");
//Serial.print(temp);Serial.print(",");
Serial.println("");
delay(10);
}
上面的程序中的卡尔曼滤波函数也贴上来,需要的拿去:
/* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics. All rights reserved.
This software may be distributed and modified under the terms of the GNU
General Public License version 2 (GPL2) as published by the Free Software
Foundation and appearing in the file GPL2.TXT included in the packaging of
this file. Please note that GPL2 Section 2[b] requires that all works based
on this software must also be made publicly available under the terms of
the GPL2 ("Copyleft").
Contact information
-------------------
Kristian Lauszus, TKJ Electronics
Web : http://www.tkjelectronics.com
e-mail : kristianl@tkjelectronics.com
*/
#ifndef _Kalman_h
#define _Kalman_h
class Kalman {
public:
Kalman() {
/* We will set the varibles like so, these can also be tuned by the user */
Q_angle = 0.001;
Q_bias = 0.003;
R_measure = 0.03;
bias = 0; // Reset bias
P[0][0] = 0; // Since we assume tha the bias is 0 and we know the starting angle (use setAngle), the error covariance matrix is set like so - see: http://en.wikipedia.org/wiki/Kalman_filter#Example_application.2C_technical
P[0][1] = 0;
P[1][0] = 0;
P[1][1] = 0;
};
// The angle should be in degrees and the rate should be in degrees per second and the delta time in seconds
double getAngle(double newAngle, double newRate, double dt) {
// KasBot V2 - Kalman filter module - http://www.x-firm.com/?page_id=145
// Modified by Kristian Lauszus
// See my blog post for more information: http://blog.tkjelectronics.dk/2012/09/a-practical-approach-to-kalman-filter-and-how-to-implement-it
// Discrete Kalman filter time update equations - Time Update ("Predict")
// Update xhat - Project the state ahead
/* Step 1 */
rate = newRate - bias;
angle += dt * rate;
// Update estimation error covariance - Project the error covariance ahead
/* Step 2 */
P[0][0] += dt * (dt*P[1][1] - P[0][1] - P[1][0] + Q_angle);
P[0][1] -= dt * P[1][1];
P[1][0] -= dt * P[1][1];
P[1][1] += Q_bias * dt;
// Discrete Kalman filter measurement update equations - Measurement Update ("Correct")
// Calculate Kalman gain - Compute the Kalman gain
/* Step 4 */
S = P[0][0] + R_measure;
/* Step 5 */
K[0] = P[0][0] / S;
K[1] = P[1][0] / S;
// Calculate angle and bias - Update estimate with measurement zk (newAngle)
/* Step 3 */
y = newAngle - angle;
/* Step 6 */
angle += K[0] * y;
bias += K[1] * y;
// Calculate estimation error covariance - Update the error covariance
/* Step 7 */
P[0][0] -= K[0] * P[0][0];
P[0][1] -= K[0] * P[0][1];
P[1][0] -= K[1] * P[0][0];
P[1][1] -= K[1] * P[0][1];
return angle;
};
void setAngle(double newAngle) { angle = newAngle; }; // Used to set angle, this should be set as the starting angle
double getRate() { return rate; }; // Return the unbiased rate
/* These are used to tune the Kalman filter */
void setQangle(double newQ_angle) { Q_angle = newQ_angle; };
void setQbias(double newQ_bias) { Q_bias = newQ_bias; };
void setRmeasure(double newR_measure) { R_measure = newR_measure; };
private:
/* Kalman filter variables */
double Q_angle; // Process noise variance for the accelerometer
double Q_bias; // Process noise variance for the gyro bias
double R_measure; // Measurement noise variance - this is actually the variance of the measurement noise
double angle; // The angle calculated by the Kalman filter - part of the 2x1 state matrix
double bias; // The gyro bias calculated by the Kalman filter - part of the 2x1 state matrix
double rate; // Unbiased rate calculated from the rate and the calculated bias - you have to call getAngle to update the rate
double P[2][2]; // Error covariance matrix - This is a 2x2 matrix
double K[2]; // Kalman gain - This is a 2x1 matrix
double y; // Angle difference - 1x1 matrix
double S; // Estimate error - 1x1 matrix
};
#endif
[無責任發言]
基本上, IIR 濾波是(頻域)濾波器, Kalman則是(時域)濾波器. 沒有誰好誰壞之分, 端看應用面.
IIR 較相近是對某固定主頻率的(低通)濾波器. 這個適合在SENSOR上有雜訊時, 把NOISE濾掉. 在MUP6050上而言, 雜訊就是當你讓SENSOR 本身靜止不動時, 但若它卻送出抖動的訊息時, 那就是雜訊.
Kalman則是非固定的, 它可以隨時間收集到的DATA, 做出預測及動態調整要做濾波的主頻率, 所以特別適合用在追蹤某目標的位置/速度/加速度時, 對目標的位置估計(去掉NOISE)
回复
有奖活动 | |
---|---|
【有奖活动】分享技术经验,兑换京东卡 | |
话不多说,快进群! | |
请大声喊出:我要开发板! | |
【有奖活动】EEPW网站征稿正在进行时,欢迎踊跃投稿啦 | |
奖!发布技术笔记,技术评测贴换取您心仪的礼品 | |
打赏了!打赏了!打赏了! |
打赏帖 | |
---|---|
与电子爱好者谈读图二被打赏50分 | |
【FRDM-MCXN947评测】Core1适配运行FreeRtos被打赏50分 | |
【FRDM-MCXN947评测】双核调试被打赏50分 | |
【CPKCORRA8D1B评测】---移植CoreMark被打赏50分 | |
【CPKCORRA8D1B评测】---打开硬件定时器被打赏50分 | |
【FRDM-MCXA156评测】4、CAN loopback模式测试被打赏50分 | |
【CPKcorRA8D1评测】--搭建初始环境被打赏50分 | |
【FRDM-MCXA156评测】3、使用FlexIO模拟UART被打赏50分 | |
【FRDM-MCXA156评测】2、rt-thread MCXA156 BSP制作被打赏50分 | |
【FRDM-MCXN947评测】核间通信MUTEX被打赏50分 |