新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 驱动高精度模数转换器的方法

驱动高精度模数转换器的方法

作者: 时间:2024-02-20 来源:亚德诺半导体 收藏

当今的系统不仅是工业应用的核心组件,通常还用于实现基于的温度、流量、液位、压力和其他物理量测量,随后将测量数据转换为高分辨率数字信息,再传输至软件进一步处理,这些系统对精度的要求越来越高。

本文引用地址://www.cazqn.com/article/202402/455519.htm

为此,开发人员必须综合考量会对系统产生不利影响的特性(例如信号噪声和漂移),以及提高转换速率和传输速率等要求。将不同的类型和相应的不同输出直接连接通常需要高输入阻抗。此外,输入还应该能够缓冲、放大和调整输入信号的电平,或者能够生成差分信号,覆盖模数转换器(ADC)的整个电压范围,同时满足其共模电压要求。

但是,原始测量信号应尽可能保持不失真。所以,输入级是确定系统整体精度的决定性因素之一。通常使用可编程增益仪表放大器(PGIA)可实现这一目标,即通过外部电阻调节增益,然后将输出直接耦合至下游ADC的输入。PGIA通常配备单端输出,因此不能直接用于驱动全差分逐次逼近寄存器(SAR) ADC。因此,需要采用额外的信号调理或驱动级。但是,额外的驱动级会影响整个系统的性能,因为该驱动级可能带来一些会引发额外误差的组件。通过选择合适的组件,可以确保实现出色性能,具体电路如图1所示。

图片

图1. 精密数据采集系统的简化框图。

图1所示为数据采集系统的简化电路,包含基准电压源和带集成电源的基准电压缓冲器,以及PGIA和AD4020SAR ADC。PGIA的差分输出采用可实现数字可编程增益的分立式标准组件。其输入阻抗在GΩ范围内,共模抑制比超过92 dB,具有低输出噪声和低失真特性,因此非常适合用于直接控制SAR ADC,且不会影响性能。PGIA驱动AD4020,这是一款高精度20位1.8 MSPS的低功率SARADC。AD4020提供一系列其他功能,可用于降低整个信号链的复杂度,增加通道密度,同时不影响性能。其他功能包括用于减少非线性输入电流的高阻抗模式,以及用于将PGIA直接连接至其间的简单RC滤波器的长检测相位。AD4020提供高采样率,可精确采集高达数百千赫兹的高频信号。它还支持抽取功能,可扩大动态范围,从而实现对低压信号的精密检测。此外,还可减少对抗混叠滤波器的需求。

SPI接口兼容不同的逻辑电平(1.8 V、2.5 V、3 V和5 V),可以通过多种方式进行编程,同时提供读写功能。

图1中的电路采用所示组件,可获得出色的线性度(INL,典型值为±2 ppm)、低偏置和增益漂移(分别为±3.5 ppm/°C和±6 ppm/°C),以及出色的噪声功率(超过–115 dB),所有这些特性均支持最高转换率和整个增益范围。此电路支持双极和单极单端或全差分输入信号(高达±10 V),增益为1至10。输入电压范围与增益呈函数关系,参见表1。

图片

表1. 输入电压范围与增益的函数关系

图示电路也提供校准选项,以适用于更大的PGIA范围。此功能提供精准的比率性能,通过提供信号缓冲、放大和衰减、共模电平漂移选项,以及各种应对处理挑战的其他功能来简化系统设计。通过高阻抗输入和可编程增益设计,可以连接提供单极、双极、差分和单端输出的各种。此外,也可以满足漂移、偏置、线性度、SNR和共模抑制等要求。通过这种方式,可以轻松实现适用于极高精度要求应用的高精度数据采集系统。



评论


相关推荐

技术专区

关闭